Random Walk inside Expander Graph

Objective

Constructing a new and better random number generator by conducting random walk inside expander graph

Method

- Construct an expander graph by Margulis Method and confirm it by calculating the eigenvalues
- Conduct a random walk inside it and create a random number generator
- 3. Test its correctness by counting how many consecutive values you get

Fumihiro Tamada Advisor: Dr. Takunari Miyazaki

Example of random walk

Result

The value of eigenvalues

The second highest eigen value is between 0.25 and 0.50 which is smaller than

2*sqrt((degree of the graph)-1).

Therefore, the graph is expander.

Consecutive runs	Expander Graph RNG with Margulis Method	Traditional RNG	Theoretical Result
12	3890	4319	4096 ± 64
13	1916	2175	2048 ± 45
14	933	1089	1024 ± 32

The table shows the comparison between a traditional RNG and the new RNG by counting how many consecutive runs of heads of tails more than n times in 256*65536 coin flips.

Technology

